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Abstract— We present a formation controller for transporting
deformable objects in 2D space with a team of mobile robots.
We assume the deformation of the transported object is deter-
mined by the deformation of the robotic formation. The goal
is to reach a target configuration consisting of a desired shape,
scale, position and orientation, allowing linear and quadratic
deformations of the robotic formation relative to the target
configuration. The use of this range of deformation modes
enables preserving the integrity of the object while making
the transport system highly flexible. The controller is tested in
simulations and in real experiments with unicycle robots.

I. INTRODUCTION

Transporting a deformable object with a team of robots
can be a challenging task that requires high coordination,
especially if the object is large, heavy or fragile, or if the
trajectory to follow requires the team of robots to execute
very specific actions. Formation control allows multirobot
systems to manipulate these objects with very accurate
movements to prevent damage during the transport.

The manipulation of deformable objects with multiple
robots is a field widely covered in prior works [1]. In
this context, transport tasks have been considered in dif-
ferent scenarios [2]–[6]. Some related work [7] presents
the coordinated motion of the team of robots, modelled
by single-integrator dynamics, through a linear combination
of translation, shape-preserving transformation and affine
transformation of a reference configuration. This combi-
nation enables the robots to carry out efficient rotation
and resizing maneuvers. Other studies propose a solution
exploiting measures of deformation with a linear control
law considering single-integrator dynamics [8] or assuming
double-integrator dynamics [9] to add inertial effects to the
system. The controller in [9] allows driving a deformable
object to a desired state by driving the team to a target
configuration, defined as a combination of shape, scale,
position and orientation in 2D space.

Deformation modes have been used to model deformable
objects in computer graphics. Two examples are [10], which
exploited the Finite Element Method, and [11], which pro-
posed a geometric approach based on shape matching. This
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Fig. 1. (Left) Reference configuration of the formation. (Right) Represen-
tation of two achievable configurations (C1 and C2) during the transport of
a deformable object by a team of mobile robots steered with the proposed
controller to a target configuration, defined as a combination of desired
shape, scale, position and orientation. If the task does not require that the
object’s shape is modified, the formation will be kept in a shape-preserving
configuration (C1). However, if the formation needs to deform the object, the
deformed formation will be constrained to linear and quadratic deformation
modes allowing stretching, shearing, bending and twisting while avoiding
other unsuitable and unpredictable deformation patterns (C2).

latter approach was used in [12] to estimate deformability in
robotics applications. Modal analysis has also been recently
exploited for shape control [13]. Linear deformation modes
(i.e., stretching and shearing) were considered in [9] to con-
trol deformation during the transport, enhancing flexibility.

In this paper, we propose a method to transport a de-
formable object grasped around its contour by multiple mo-
bile robots that allows the agents to perform maneuvers that
deform the object only with linear and quadratic deformation
modes during the trajectory. Some situations require the
transported object to be deformed linearly, stretching or
shearing it, as considered in [9]. Others, however, also need
to deform it in a quadratic way, especially when the task
entails changes in direction, causing the object to bend or
twist. Therefore, we introduce quadratic deformation modes,
inspired by [11], to increase adaptability relative to [9].

II. MULTIROBOT CONTROL WITH DEFORMATION MODES

We consider a formation of N robots moving in a 2D space
grasping the transported object through rotational joints, as
illustrated in Fig. 1. We denote the position of robot i ∈
{1, . . . , N} by pi. We assume single-integrator dynamics,
i.e., ṗi = ui, with ui the control input. We group for the full
team p = [p⊺

1 , . . . ,p
⊺
N ]

⊺ ∈ R2N and u = [u⊺
1 , . . . ,u

⊺
N ]

⊺ ∈
R2N . The control strategy is based on separately controlling
each configuration parameter (shape, scale, position and ori-
entation) and using a linear combination of those controllers.
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As in [9], we assume that by suitably controlling the
shape and scale of the team of robots we can control the
deformation of the object and maintain its integrity. This
assumption is valid, e.g., for highly deformable objects
whose shape adapts to the shape of the team of robots.

Shape Control. We define ci = [cix, ciy]
⊺ as the position

of the robot i in the reference configuration. Note that the
target configuration is defined with the same shape as the
reference one up to a scale, translation and rotation (Fig.
1). In order to control the shape of the formation during
the transport, two types of configurations are considered.
The shape-preserving configuration keeps the team in the
same shape as the reference configuration. Let us define the
following matrix:

CH = K

[
c1x c1y . . . cNx cNy

−c1y c1x . . . −cNy cNx

]⊺
∈ R2N×2,

(1)
where K = (IN − (1/N)1N1⊺

N ) ⊗ I2 ∈ R2N×2N is a
centering matrix which translates the centroid to zero, IN
is the N ×N identity matrix, 1N is a column vector of N
ones and ⊗ denotes the Kronecker product.

Notice that for any hH = [hH1, hH2]
⊺ the con-

dition Kp − CHhH = 0 is equivalent to pi =
[[hH1, hH2]

⊺
, [−hH2, hH1]

⊺
] ci for every robot i with the

sets of points pi and ci both having zero centroid. This
represents a rotation and uniform scaling of the reference
configuration [9]. Note that we use centering for optimality
[9], [11]. Therefore, if this condition is satisfied while the
robots are moving, the team’s shape will be kept. To define
hH we propose to use a least-squares shape alignment strat-
egy: i.e., we choose hH so that ∥Kp−CHhH∥ is minimum,
being ∥ · ∥ the Euclidean norm. We define henceforth hH =
C+

HKp = C+
Hp, as C+

HK = C+
H , where + denotes the

Moore-Penrose inverse. We can formulate the following cost
function associated with shape preservation:

γH =
1

2
∥Kp−CHhH∥2 =

1

2
p⊺AHp , (2)

where AH = K − CHC+
H . Note that AH is constant,

symmetric, idempotent and positive semidefinite. Then, we
propose a controller for preserving the shape of the team
following the negative gradient of γH :

uH = −kHAHp , (3)

where kH is a positive control gain.
The second configuration we consider is the deformed

configuration which is expressed by deformation modes up to
order two, allowing the formation to deform in a controlled
way. Inspired by [11], we define this deformation with linear
(Li), quadratic (Qi) and mixed (Mi) terms. Analogously to
CH above, we can define the matrix

CG = K

L1 Q1 M1

...
...

...
LN QN MN

 ∈ R2N×10, (4)

Li =

[
cix ciy 0 0
0 0 cix ciy

]
∈ R2×4, (5)

Qi =

[
c2ix c2iy 0 0
0 0 c2ix c2iy

]
∈ R2×4, (6)

Mi =

[
cixciy 0
0 cixciy

]
∈ R2×2, (7)

where Li terms can only represent shear and stretch, whereas
Qi and Mi terms can represent bend and twist.

Similarly to the shape-preserving control, we choose a
vector hG ∈ R10 which minimizes ∥Kp−CGhG∥. Then,
we propose a deformation controller following the negative
gradient of a cost function γG = 1

2p
⊺AGp:

uG = −kGAGp , (8)

being kG a positive control gain and AG = K − CGC
+
G,

which is constant, symmetric, idempotent and positive
semidefinite.

Scale Control. To fully control the deformation we also
control the scale of the team using the variable s = ∥hH∥.
For achieving the desired scale, sd, we propose the following
control term, where ks is a positive control gain and s > 0
can be assumed [9]:

us = ks (sd − s) (1/s)CHhH . (9)

Translation and Rotation Control. Translation and ro-
tation of the formation do not alter the relative positions of
the robots, so they do not affect the object’s deformation.
The translation controller is responsible for driving the team
of robots as a whole to achieve a desired absolute position,
gd, of the formation centroid g = 1

N [p1, . . . ,pN ]1N . The
rotation controller rotates the shape around the formation
centroid until the desired angle, θd, is reached. The angle
can be obtained as θ = atan2 (hH2, hH1). Control terms to
achieve these transformations are, respectively,

uc = kc 1N ⊗ (gd − g) , (10)

uθ = kθ (θd − θ) (IN ⊗ S)CHhH , (11)

where kc and kθ are positive control gains and S =
[[0, 1]

⊺
, [−1, 0]

⊺
]. In practice it is possible to take θd = 0

for convenience and without loss of generality.
Full Formation Controller. The full control law results

from the linear combination of the individual controllers:

u = uH + uG + us + uc + uθ . (12)

III. EXPERIMENTAL VALIDATION

We validate our controller using the Robotarium [14]
with multiple unicycle robots. Note that dynamic model
conversion and avoidance of collisions (between agents, and
with obstacles) are handled by the Robotarium. We define
error variables for position, scale and orientation as eg =
g − gd, es = s− sd, eθ = θ − θd, respectively.

We first conduct simulations for a formation of twelve
robots manipulating a deformable sheet. The object is mod-
elled with the As-Rigid-As-Possible (ARAP) technique [15].
The results are illustrated in Fig. 2. The videos of the
simulations can be seen in [16].



Fig. 2. Simulation results. From left to right, the plots are: 1st, initial configuration (blue circles, bottom) and target configuration (red squares, top); 2nd

and 3rd, robot paths and error variables in Case 1; 4th and 5th, robot paths and error variables in Case 2. The configuration of the formation at instant
t = 0.8 [s] is overlapped on the paths for both cases, showing that only in Case 2 the deformation tends to preserve a quadratic, bending-like pattern. In
both cases, control gains are kH = 5, kc = 0.5, ks = 2, and kθ = 0.15.

Fig. 3. Experimental results. For each row, the five plots from left to right are: representative top-view snapshots, robot paths, control errors, unicycle
linear velocities, and unicycle angular velocities. Each row corresponds to a different shape-control strategy: 1st, the shape is not controlled in any way,
kH = kG = 0, and the shape errors (γH , γG) do not converge to zero; 2nd, deformation is not controlled, kH ̸= 0 and kG = 0; and 3rd, deformation
is controlled, kH ̸= 0 and kG ̸= 0. In the 2nd and 3rd cases, although the shape cannot be preserved, all the errors reach zero values, but only in the 3rd

strategy the object deforms in a controlled manner. The improvement of the parameters in the 3rd case with respect to the 2nd one can be seen in the error
evolution between 50–100 [s]. The values of the remaining control gains are kc = ks = kθ = 0.1 in the three tests.

We consider a situation where a bent initial configuration
has to be driven to a straight target one. We test two cases.
For Case 1 we choose kG = 0. The team of robots quickly
approaches the same shape as the reference configuration,
but deforming the object in an uncontrolled way. For Case
2 we select kG = 10. This allows the formation to maintain
a quadratic deformation. The movements are more efficient
than in Case 1, producing gradual changes and staying close
to a quadratic deformation pattern during the transient period.

Finally, we test the proposed controller in a real scenario
with obstacles, where a team of eight robots transports a
simulated sheet (also modelled with ARAP) along a curved
corridor to a target configuration (Fig. 3). To achieve the
experiment’s goal we manually define three intermediate
waypoints, as a combination of shape, scale, position and
orientation, to guide the team during the task. The first

strategy we test is to control the formation scale, position and
orientation, but not the shape. Therefore, all errors converge
to zero except those related to shape. The second strategy
consists in applying kH = 0.2 while maintaining kG = 0, so
that the formation tends to preserve the shape of the object
but the deformations, which appear inevitably due to the
constraints of this particular scenario, are uncontrolled. In
the third strategy, we use kH = 0.1 and kG = 1. In this
case, the object deforms in a controlled way, preserving its
integrity. In the last two strategies all error variables converge
to zero. These results support the interest of the proposed
approach based on linear and quadratic deformation modes.
Video results of these experiments are in [16].

Future work may involve the formal analysis of the con-
troller, or the extension to 3D, with a different formulation
of the rotation and uniform scaling transformation.
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